SQL table partitioning

Using table partitioning, developers can split up large tables into smaller, manageable pieces. A database’s performance and scalability can be improved when users only have access to the data they need, not the whole table.

Whenever a table gets too big for efficient management, horizontal partitioning divides it into smaller tables. Each table has a subset of the original table’s rows.

For example, a customer order table might be populated with millions of rows, each representing one order, on an e-commerce website. If a table isn’t partitioned, it can be difficult and time consuming to perform queries on the data, especially if it needs to be scanned in full.

In order to solve this problem, a horizontal partition by date can be used. By doing so, it will not have to scan through the entire table to find the data it needs, but will only be able to search for relevant partitions. A partition would contain orders from a particular period, like a month or year.

A database can improve query performance while reducing the amount of data it has to search by searching only relevant partitions for the data it needs. By partitioning, you can access only the relevant partition instead of scanning a large table and doing a lot of unnecessary IO. As a result, we don’t have as many read operations, the disk isn’t overloaded, and the database has more time to handle other requests.

There’s more to partitioning than just reading operations — writing operations also benefit from partitions, especially if there’s an index on a table. The bigger the table, the bigger the indexes. Each write operation to the table requires updating the indexes on the table. Because indexes are updated in real time and not as a background process, inserting data into a big table without partitions will take a lot longer.

It’s also important to think ahead, about the future, since we’ve already talked about writing. If you have a database that’s not static but dynamic, and it gets a lot of write operations every day, as time passes, it’ll get bigger and bigger until the central table becomes hard to manage. By letting the database handle more data, the partition makes it simpler and easier to expand. If you have a date-partitioned database, you can add new partitions as needed to store data from future time periods.

There is also a significance to the size of your partitions in this case. Make sure that the partitions are not too large, otherwise the solution will not help and the problem will persist. For example, if you were to divide by date, you could divide by year, month, day, hour, etc… So how do you do it? There are two key parameters to consider: the first is — what is the nature of your application, what is the style of your queries? Are they daily? Monthly? Annuals? And the second parameter is the amount of data that the partition will contain so that it is not too large and difficult to manage.

Several organizations I found used the Hebridean solution for partition size, too. For the “hot” information, like future dates and dates from the near past, they implement small partitions, like daily partitions. For “cold” information, they move it to bigger partitions, like monthly or annual partitions.

What are the advantages of partitioning over indexing?

I used to interview database managers by asking them:

There is a very large table, and the queries addressed to it are focused on a certain date. For example, an event table, which contains a date (and time) column, the application is querying for data by date. (where date_time = ‘XXXXX’)

To improve query performance, which solution should be implemented? Dividing the table into partitions or building an index on the date column?

The correct answer is both, let me explain why.

The partition-only solution won’t help us get good query performance because what size partitions will we make? A partition for each second or every minute doesn’t make sense. The partition of an hour will have a lot of data, so every query will have to scan the whole partition, and you’ll have to do a lot of unnecessary I/O operations.

Index-only might find the record faster and more accurately, but a large index can sometimes result in more I/O per read compared to using table partitioning. This is because a large index can have many levels, which means that the database may need to perform more I/O in order to navigate through the index and locate the desired data.

The best way to achieve our goal is with a hybrid solution. Partitions and an index.

It is possible to discuss partitions in more detail, such as their advantages from a maintenance perspective. Which commands allow us to manage our information more effectively and efficiently.

Also, another interesting point about partitions is actually related to what I’m working on today, query caching. Correctly constructing a schema with partitions will allow you to make use of query caching more efficiently.

Next time, we’ll talk about that.

Contact us at: info@rapydo.io
Visit our site at: rapydo.io
Follow us on LinkedIn

More from the blog

Rapydo VS AWS Performance Insights

Rapydo and AWS RDS Performance Insights both offer database performance monitoring, but Rapydo excels with its advanced automation, custom rules, and cache management tailored specifically for MySQL. While AWS integrates well with its ecosystem, Rapydo provides deeper optimization and proactive management. For MySQL performance, Rapydo is the superior choice.

Keep reading

Rapydo vs AWS CloudWatch: Optimizing AWS RDS MySQL Performance

The blog compares AWS CloudWatch and Rapydo in terms of optimizing AWS RDS MySQL performance, highlighting that while CloudWatch provides general monitoring, it lacks the MySQL-specific insights necessary for deeper performance optimization. Rapydo, on the other hand, offers specialized metrics, real-time query analysis, and automated performance tuning that help businesses improve database efficiency, reduce costs, and optimize MySQL environments.

Keep reading

Mastering AWS RDS Scaling: A Comprehensive Guide to Vertical and Horizontal Strategies

The blog provides a detailed guide on scaling Amazon Web Services (AWS) Relational Database Service (RDS) to meet the demands of modern applications. It explains two main scaling approaches: vertical scaling (increasing the resources of a single instance) and horizontal scaling (distributing workload across multiple instances, primarily using read replicas). The post delves into the mechanics, benefits, challenges, and use cases of each strategy, offering step-by-step instructions for implementation and best practices for performance tuning. Advanced techniques such as database sharding, caching, and cross-region replication are also covered, alongside cost and security considerations. Real-world case studies highlight successful scaling implementations, and future trends like serverless databases and machine learning integration are explored. Ultimately, the blog emphasizes balancing performance, cost, and complexity when crafting a scaling strategy.

Keep reading

Deep Dive into MySQL Internals: A Comprehensive Guide for DBAs - Part II

This guide explores MySQL’s internals, focusing on architecture, query processing, and storage engines like InnoDB and MyISAM. It covers key components such as the query optimizer, parser, and buffer pool, emphasizing performance optimization techniques. DBAs will learn about query execution, index management, and strategies to enhance database efficiency. The guide also includes best practices for tuning MySQL configurations. Overall, it offers valuable insights for fine-tuning MySQL databases for high performance and scalability.

Keep reading

Deep Dive into MySQL Internals: A Comprehensive Guide for DBAs - Part I

This guide explores MySQL’s internals, focusing on architecture, query processing, and storage engines like InnoDB and MyISAM. It covers key components such as the query optimizer, parser, and buffer pool, emphasizing performance optimization techniques. DBAs will learn about query execution, index management, and strategies to enhance database efficiency. The guide also includes best practices for tuning MySQL configurations. Overall, it offers valuable insights for fine-tuning MySQL databases for high performance and scalability.

Keep reading

Implementing Automatic User-Defined Rules in Amazon RDS MySQL with Rapydo

In this blog, we explore the power of Rapydo in creating automatic user-defined rules within Amazon RDS MySQL. These rules allow proactive database management by responding to various triggers such as system metrics or query patterns. Key benefits include enhanced performance, strengthened security, and better resource utilization. By automating actions like query throttling, user rate-limiting, and real-time query rewriting, Rapydo transforms database management from reactive to proactive, ensuring optimized operations and SLA compliance.

Keep reading

MySQL Optimizer: A Comprehensive Guide

The blog provides a deep dive into the MySQL optimizer, crucial for expert DBAs seeking to improve query performance. It explores key concepts such as the query execution pipeline, optimizer components, cost-based optimization, and indexing strategies. Techniques for optimizing joins, subqueries, derived tables, and GROUP BY/ORDER BY operations are covered. Additionally, the guide emphasizes leveraging optimizer hints and mastering the EXPLAIN output for better decision-making. Practical examples illustrate each optimization technique, helping DBAs fine-tune their MySQL systems for maximum efficiency.

Keep reading

Mastering MySQL Query Optimization: From Basics to AI-Driven Techniques

This blog explores the vital role of query optimization in MySQL, ranging from basic techniques like indexing and query profiling to cutting-edge AI-driven approaches such as machine learning-based index recommendations and adaptive query optimization. It emphasizes the importance of efficient queries for performance, cost reduction, and scalability, offering a comprehensive strategy that integrates traditional and AI-powered methods to enhance database systems.

Keep reading

Mastering MySQL Scaling: From Single Instance to Global Deployments

Master the challenges of scaling MySQL efficiently from single instances to global deployments. This guide dives deep into scaling strategies, performance optimization, and best practices to build a high-performance database infrastructure. Learn how to manage multi-tenant environments, implement horizontal scaling, and avoid common pitfalls.

Keep reading

Implementing Automatic Alert Rules in Amazon RDS MySQL

Automatic alert rules in Amazon RDS MySQL are essential for maintaining optimal database performance and preventing costly downtime. Real-time alerts act as an early warning system, enabling rapid responses to potential issues, thereby preventing database crashes. User-defined triggers, based on key metrics and specific conditions, help manage resource utilization effectively. The proactive performance management facilitated by these alerts ensures improved SLA compliance and enhanced scalability. By incorporating real-time alerts, database administrators can maintain stability, prevent performance degradation, and ensure continuous service availability.

Keep reading

Understanding Atomicity, Consistency, Isolation, and Durability (ACID) in MySQL

ACID properties—Atomicity, Consistency, Isolation, and Durability—are crucial for ensuring reliable data processing in MySQL databases. This blog delves into each property, presenting common issues and practical MySQL solutions, such as using transactions for atomicity, enforcing constraints for consistency, setting appropriate isolation levels, and configuring durability mechanisms. By understanding and applying these principles, database professionals can design robust, reliable systems that maintain data integrity and handle complex transactions effectively.

Keep reading

 AWS RDS Pricing: A Comprehensive Guide

The blog “AWS RDS Pricing: A Comprehensive Guide” provides a thorough analysis of Amazon RDS pricing structures, emphasizing the importance of understanding these to optimize costs while maintaining high database performance. It covers key components like instance type, database engine, storage options, and deployment configurations, explaining how each impacts overall expenses. The guide also discusses different pricing models such as On-Demand and Reserved Instances, along with strategies for cost optimization like right-sizing instances, using Aurora Serverless for variable workloads, and leveraging automated snapshots. Case studies illustrate practical applications, and future trends highlight ongoing advancements in automation, serverless options, and AI-driven optimization. The conclusion underscores the need for continuous monitoring and adapting strategies to balance cost, performance, and security.

Keep reading

AWS RDS vs. Self-Managed Databases: A Comprehensive Comparison

This blog provides a detailed comparison between AWS RDS (Relational Database Service) and self-managed databases. It covers various aspects such as cost, performance, scalability, management overhead, flexibility, customization, security, compliance, latency, and network performance. Additionally, it explores AWS Aurora Machine Learning and its benefits. The blog aims to help readers understand the trade-offs and advantages of each approach, enabling them to make informed decisions based on their specific needs and expertise. Whether prioritizing ease of management and automation with AWS RDS or opting for greater control and customization with self-managed databases, the blog offers insights to guide the choice.

Keep reading

Optimizing Multi-Database Operations with Execute Query

Execute Query - Blog Post Executing queries across multiple MySQL databases is essential for: 1. Consolidating Information: Combines data for comprehensive analytics. 2. Cross-Database Operations: Enables operations like joining tables from different databases. 3. Resource Optimization: Enhances performance using optimized databases. 4. Access Control and Security: Manages data across databases for better security. 5. Simplifying Data Management: Eases data management without complex migration. The Execute Query engine lets Dev and Ops teams run SQL commands or scripts across multiple servers simultaneously, with features like: - Selecting relevant databases - Using predefined or custom query templates - Viewing results in tabs - Detecting schema drifts and poor indexes - Highlighting top time-consuming queries - Canceling long-running queries This tool streamlines cross-database operations, enhancing efficiency and data management.

Keep reading

Gain real time visiblity into hundreds of MySQL databases, and remediate on the spot

MySQL servers are crucial for managing data in various applications but face challenges like real-time monitoring, troubleshooting, and handling uncontrolled processes. Rapydo's Processes & Queries View addresses these issues with features such as: 1. Real-Time Query and Process Monitoring: Provides visibility into ongoing queries, helping prevent bottlenecks and ensure optimal performance. 2. Detailed Visualizations: Offers table and pie chart views for in-depth analysis and easy presentation of data. 3. Process & Queries Management: Allows administrators to terminate problematic queries instantly, enhancing system stability. 4. Snapshot Feature for Retrospective Analysis: Enables post-mortem analysis by capturing and reviewing database activity snapshots. These tools provide comprehensive insights and control, optimizing MySQL server performance through both real-time and historical analysis.

Keep reading

MySQL 5.7 vs. MySQL 8.0: New Features, Migration Planning, and Pre-Migration Checks

This article compares MySQL 5.7 and MySQL 8.0, emphasizing the significant improvements in MySQL 8.0, particularly in database optimization, SQL language extensions, and administrative features. Key reasons to upgrade include enhanced query capabilities, support from cloud providers, and keeping up with current technology. MySQL 8.0 introduces window functions and common table expressions (CTEs), which simplify complex SQL operations and improve the readability and maintenance of code. It also features JSON table functions and better index management, including descending and invisible indexes, which enhance performance and flexibility in database management. The article highlights the importance of meticulous migration planning, suggesting starting the planning process at least a year in advance and involving thorough testing phases. It stresses the necessity of understanding changes in the optimizer and compatibility issues, particularly with third-party tools and applications. Security enhancements, performance considerations, and data backup strategies are also discussed as essential components of a successful upgrade. Finally, the article outlines a comprehensive approach for testing production-level traffic in a controlled environment to ensure stability and performance post-migration.

Keep reading

How to Gain a Bird's-Eye View of Stressing Issues Across 100s of MySQL DB Instances

Rapydo Scout offers a unique solution for monitoring stress points across both managed and unmanaged MySQL database instances in a single interface, overcoming the limitations of native cloud vendor tools designed for individual databases. It features a Master-Dashboard divided into three main categories: Queries View, Servers View, and Rapydo Recommendations, which together provide comprehensive insights into query performance, server metrics, and optimization opportunities. Through the Queries View, users gain visibility into transaction locks, the slowest and most repetitive queries across their database fleet. The Servers View enables correlation of CPU and IO metrics with connection statuses, while Rapydo Recommendations deliver actionable insights for database optimization directly from the MySQL Performance Schema. Connecting to Rapydo Scout is straightforward, taking no more than 10 minutes, and it significantly enhances the ability to identify and address the most pressing issues across a vast database environment.

Keep reading

Unveiling Rapydo

Rapydo Emerges from Stealth: Revolutionizing Database Operations for a Cloud-Native World In today's rapidly evolving tech landscape, the role of in-house Database Administrators (DBAs) has significantly shifted towards managed services like Amazon RDS, introducing a new era of efficiency and scalability. However, this transition hasn't been without its challenges. The friction between development and operations teams has not only slowed down innovation but also incurred high infrastructure costs, signaling a pressing need for a transformative solution. Enter Rapydo, ready to make its mark as we step out of stealth mode.

Keep reading

Block queries from running on your database

As an engineer, you want to make sure that your database is running smoothly, with no unexpected outages or lags in response-time. One of the best ways to do this is to make sure that only the queries you expect to run are being executed.

Keep reading

Uncover the power of database log analysis

Logs.They’re not exactly the most exciting things to deal with, and it’s easy to just ignore them and hope for the best. But here’s the thing: logs are actually super useful and can save you a ton of headaches in the long run.

Keep reading